Cubing...


Square-1

So, the Square-1 is an interesting puzzle. The method I use to solve is Lars Vandenbergh's method. The full method contains a large amount of algorithms, but you don't necessarily need to learn them all. The last step, edge permuatation, requires 99 algorithms to know it fully. I only know around 5 of these, and can still get fast times. Here is a list of the algorithms I use to solve the square-1:


Edge Orientation:

Bad Edges:
UB DF(0,-1) / (-3,0) / (4,1) / (-4,-1) / (3,0) / (0,1)
UB UL DB DR(1,0) / (-3,0) / (-1,-1) / (4,1) / (-1,0)
UF UB DF DB(0,-1) / (1,1) / (-1,0)

Corner Permutation:
Swaps:
(URF-ULF)/ (3,-3) / (3,0) / (-3,0) / (0,3) / (-3,0) /
(DRF-DLF)/ (3,-3) / (0,3) / (-3,0) / (3,0) / (-3,0) /
(URF-ULB)/ (3,3) / (3,0) / (3,3) / (3,0) / (3,3) /
(DRF-DLB)/ (3,3) / (0,3) / (3,3) / (0,3) / (3,3) /
(URF-ULF) (DRF-DLF)/ (-3,0) / (3,3) / (0,-3) /
(URF-ULB) (DRF-DRB)/ (3,0) / (-3,0) / (3,0) / (-3,0) /
(URF-URB) (DRF-DLB)/ (0,3) / (0,-3) / (0,3) / (0,-3) /
(URF-ULB) (DRF-DLB)/ (3,-3) / (3,-3) /

Edge Permutation:
Swaps:
(UR UF)/ (-3,0) / (0,3) / (0,-3) / (0,3) / (2,0) / (0,2) / (-2,0) / (4,0) / (0,-2) / (0,2) / (-1,4) / (0,-3) / (0,3)
(UR UF) (DL DF)(1,0) / (0,3) / (-1,-1) / (1,-2) / (-1,0)
(UF UB) (DF DB)(1,0) / (5,-1) / (-5,1) / (5,0)
(UF UB) (DR DB)(1,0) / (0,-1) / (0,-3) / (5,0) / (-5,0) / (0,3) / (0,1) / (5,0)
(UR UB) (DF DB)(0,-1) / (1,0) / (3, 0) / (0,-5) / (0,5) / (-3, 0) / (-1, 0) / (0, -5)
(UR UB) (UL UF)(1,0) / (-1,-1) / (-3,0) / (1,1) / (3,0) / (-1,-1) / (0,1)
(UR UL) (UF UB)(1,0) / (-1,-1) / (-3,0) / (1,1) / (6,0) / (-1,-1) / (-3, 0) / (1,1) / (-1,0)
(UR UB UL)(1,0) / (0,-3) / (-1,0) / (3,0) / (1,0) / (0,3) / (-1,0) / (-3,0) /
(UR UL UB)/ (3,0) / (1,0) / (0,-3) / (-1,0) / (-3,0) / (1,0) / (0,3) / (-1,0)