Square-1
So, the Square-1 is an interesting puzzle. The method I use to solve is
Lars Vandenbergh's method.
The full method contains a large amount of algorithms, but you don't necessarily need to learn them all.
The last step, edge permuatation, requires 99 algorithms to know it fully. I only know around 5 of these,
and can still get fast times. Here is a list of the algorithms I use to solve the square-1:
Edge Orientation:
Bad Edges: | |
UB DF | (0,-1) / (-3,0) / (4,1) / (-4,-1) / (3,0) / (0,1) |
UB UL DB DR | (1,0) / (-3,0) / (-1,-1) / (4,1) / (-1,0) |
UF UB DF DB | (0,-1) / (1,1) / (-1,0) |
Corner Permutation:
Swaps: | |
(URF-ULF) | / (3,-3) / (3,0) / (-3,0) / (0,3) / (-3,0) / |
(DRF-DLF) | / (3,-3) / (0,3) / (-3,0) / (3,0) / (-3,0) / |
(URF-ULB) | / (3,3) / (3,0) / (3,3) / (3,0) / (3,3) / |
(DRF-DLB) | / (3,3) / (0,3) / (3,3) / (0,3) / (3,3) / |
(URF-ULF) (DRF-DLF) | / (-3,0) / (3,3) / (0,-3) / |
(URF-ULB) (DRF-DRB) | / (3,0) / (-3,0) / (3,0) / (-3,0) / |
(URF-URB) (DRF-DLB) | / (0,3) / (0,-3) / (0,3) / (0,-3) / |
(URF-ULB) (DRF-DLB) | / (3,-3) / (3,-3) / |
Edge Permutation:
Swaps: | |
(UR UF) | / (-3,0) / (0,3) / (0,-3) / (0,3) / (2,0) / (0,2) / (-2,0) / (4,0) / (0,-2) / (0,2) / (-1,4) / (0,-3) / (0,3) |
(UR UF) (DL DF) | (1,0) / (0,3) / (-1,-1) / (1,-2) / (-1,0) |
(UF UB) (DF DB) | (1,0) / (5,-1) / (-5,1) / (5,0) |
(UF UB) (DR DB) | (1,0) / (0,-1) / (0,-3) / (5,0) / (-5,0) / (0,3) / (0,1) / (5,0) |
(UR UB) (DF DB) | (0,-1) / (1,0) / (3, 0) / (0,-5) / (0,5) / (-3, 0) / (-1, 0) / (0, -5) |
(UR UB) (UL UF) | (1,0) / (-1,-1) / (-3,0) / (1,1) / (3,0) / (-1,-1) / (0,1) |
(UR UL) (UF UB) | (1,0) / (-1,-1) / (-3,0) / (1,1) / (6,0) / (-1,-1) / (-3, 0) / (1,1) / (-1,0) |
(UR UB UL) | (1,0) / (0,-3) / (-1,0) / (3,0) / (1,0) / (0,3) / (-1,0) / (-3,0) / |
(UR UL UB) | / (3,0) / (1,0) / (0,-3) / (-1,0) / (-3,0) / (1,0) / (0,3) / (-1,0) |